sábado, 1 de abril de 2017

LA PARED CELULAR BACTERIANA. LA TINCIÓN DE GRAM

Las bacterias presentan una membrana interna que rodea el citoplasma bacteriano y presenta las características generales de las membranas plasmáticas. Hacia el exterior de la membrana interna, todas las bacterias (con excepción de los micoplasmas grupo de organismos al que pertenecen patógenos de los géneros Mycoplasma, Ureaplasma y Fitoplasma) presentan una pared celular formada por un polímero complejo denominado peptidoglicano.

 Algunos tipos de bacterias tienen una segunda membrana (membrana externa) que recubre la capa de peptidoglicano por su parte exterior En aquellas bacterias en las que existe una membrana externa (bacterias Gram-negativas), la capa de peptidoglicano es más delgada que en las que carecen de ella (bacterias Grampositivas). Se denomina espacio periplásmico al comprendido en las bacterias Gramnegativas entre las membranas interna y externa y al inmediatamente adyacente a la membrana interna en el caso de las bacterias Gram-positivas. Estructura de la membrana interna La membrana interna está formada por una bicapa lipídica. En el caso de las bacterias los lípidos que forman esta membrana son generalmente fosfolípidos y no se encuentran esteroles (salvo en el caso de los micoplasmas). Esto diferencia claramente las membranas bacterianas de las de células eucarióticas superiores que sí tienen esteroles en sus membranas

 Funciones de la membrana interna 

1.- Barrera de permeabilidad selectiva: La membrana lipídica que recubre las células es impermeable a las moléculas cargadas y a los iones, mientras que es permeable a los compuestos orgánicos y moléculas neutras. Por ello es una barrera de permeabilidad que restringe el paso de los nutrientes al interior de la célula, y el de compuestos intracelulares al exterior. La entrada de compuestos polares a través de la membrana lipídica se consigue de varias maneras: 

a.- En ciertos casos existen poros a través de la membrana que permiten el paso selectivo de compuestos polares. Estos canales suelen estar dedicados a la entrada de solutos y su entrada está impulsada por la difusión libre a lo largo de un gradiente de concentración. 

b.- En otros casos, existen moléculas transportadoras que recogen del exterior molé- culas y las transportan al interior consumiendo energía en el proceso. La energía motriz en este caso es ATP.

c.- En el caso de ciertos iones intracelulares, éstos son transportados al exterior mediante sistemas de proteínas transportadoras de forma que se generan gradientes transmembranales. La energía que impulsa este transporte deriva de la oxidación de compuestos reducidos (potencial redox). 

d.- En el caso de los protones (H+ ) que se acumulan en el exterior de la célula estableciéndose un gradiente a través de la membrana, la entrada de estos cationes puede realizarse a través de canales especializados de forma que la energía que se libera como consecuencia de la entrada de los protones (destrucción del gradiente) se emplea para la síntesis de ATP. Estos canales son conocidos como protón-ATPasas.

 e.- En el caso de proteínas de membrana que han de exportarse al exterior de la célula, éstas tienen secuencias especiales en su extremo amino-terminal que las dirigen hacia la membrana y son procesadas (las secuencias especiales son eliminadas) cuando se produce el tránsito a través de la membrana celular. Los sistemas de transporte a través de la membrana consumen energía porque se realiza un trabajo en contra de un gradiente. Pueden clasificarse en tres grandes grupos: uniportadores que transportan un solo tipo de moléculas, simportadores que translocan una molécula asociada a otra que se mueve a lo largo de un gradiente de concentración, y antiportadores similares a los anteriores pero en los que la energía liberada por el transporte a favor de gradiente de concentración se utiliza para translocar otra molécula en dirección contraria.


2.- Soporte ordenado de sistemas enzimáticos: Una gran cantidad de reacciones metabólicas han de llevarse a cabo por conjuntos de enzimas que funcionan en cadena de forma que los productos de la reacción catalizada por una enzima son substrato de la siguiente y así sucesivamente. Para que estas reacciones puedan producirse es necesario que los constituyentes de estos sistemas multienzimáticos estén colocados correctamente en el espacio de forma que la transferencia de substratos entre ellos sea la apropiada.

 Las membranas biológicas son un buen soporte de sistemas enzimáticos de este tipo ya que en ellas pueden ordenarse en dos dimensiones los constituyentes de la cadena de enzimas. Sistemas enzimáticos de membrana son los responsables de la cadena respiratoria, los de síntesis de pared celular, los de generación de ATP mediante sistemas de protón-ATPasa, los de recepción y transmisión de señales al interior celular, etc.

 En la membrana interna se encuentran los sistemas enzimáticos responsables de la síntesis de la propia membrana, los receptores de señales extracelulares (sistemas de dos componentes formadas por un receptor de la señal y un transmisor de la señal al interior celular), el sistema de transporte de electrones acoplado al transporte de protones que forma la cadena respiratoria, el sistema de protón ATP-asa responsable de la síntesis de ATP, el sistema enzimático responsable de las últimas etapas de la síntesis de la capa de peptidoglicano y los sistemas de transporte a través de membrana.

 Debido a su naturaleza lipídica las propiedades de las membranas cambian con la temperatura pasando de una estructura de membrana fluida a temperaturas altas (similares a las ambientales o a las del interior de los organismos donde viven) a una estructura de membrana cristalina cuando la temperatura es demasiado baja.

 La condición fluida o cristalina de una membrana afecta a su actividad y, por consiguiente, al metabolismo general de la célula. La integridad de la membrana interna es vital para la célula: si se rompe el contenido celular se pierde. Incluso pequeños poros no controlados que se producidos accidentalmente en la membrana pueden ser fatales ya que la generación de la energía celular es sólo posible cuando la membrana interna está íntegra. 

Debido a sus especiales características, la membrana interna es diana para la acción de diferentes tipos de antibióticos tales como los inhibidores de la síntesis de peptidoglicano (antibióticos β-lactámico, grupo al que pertenecen la penicilina y sus derivados) o antibióticos formadores de poros que destruyen los gradientes transmembranales. La membrana interna está empujada por la presión de turgor contra la capa de peptidoglicano.

 Estructura del peptidoglicano

 El peptidoglicano es una macromolécula que rodea completamente las células bacterianas proporcionándoles un sistema de resistencia mecánica frente a la presión osmótica y confiriéndoles la forma característica de los diferentes grupos bacterianos. La membrana interna por sí sola no es capaz de soportar la presión de turgor (debida a la presión osmótica) de la célula bacteriana. El elemento de resistencia mecánica de la célula es la capa de peptidoglicano.

 La capa de peptidoglicano está formada por un polímero complejo denominado mureína que forma una macromolécula que recubre completamente la célula. Estructuralmente está formado por cadenas glucosídicas en las que se repite una unidad elemental formada por N-acetil-glucosamina unida por un enlace glicosídicos β1→4 a ácido N-acetil-murámico. Las unidades elementales también están conectadas entre sí por enlaces glicosídicos β1→4. Las cadenas glucosídicas así formadas pueden ser de longitud variable entre las diferentes especies bacterianas y entre diferentes momentos de la vida de la bacteria. Las cadenas glucosídicas están colocadas paralelas entre sí y están unidas unas a otras mediante puentes peptídicos formados por cadenas de aminoácidos que se unen al resto del ácido N-acetil-murámico.

 Las cadenas peptídicas están unidas al ácido N-acetil-murámico y están formadas por aminoácidos en los que se observa una alternancia de restos con configuración L y configuración D. La presencia de D-aminoácidos en estas cadenas peptídicas es de la mayor importancia porque no se encuentran aminoácidos de este tipo en otras estructuras celulares procarióticas o eucarióticas y, por tanto, pueden ser dianas específicas para antibióticos que no actúen sobre organismos eucarióticos. La capa de peptidoglicano presenta un grosor variable según las especies bacterianas: las Gram-positivas tienen una capa de peptidoglicano gruesa, mientras que las Gramnegativas tienen una capa prácticamente monomolecular.

Membrana externa

 Las bacterias Gram-negativas presentan una segunda membrana (membrana externa) por el exterior de la capa de peptidoglicano que tiene ciertas diferencias en su estructura respecto a las membranas clásicas. Las más relevantes son la presencia de un lipopolisacárido en su cara exterior y la presencia de porinas. El lipopolisacárido es una molécula compleja que proyecta hacia el exterior de la célula cadenas de polisacárido. Su importancia radica en que es altamente antigénico. Las variantes de lipopolisacárido de diferentes cepas de una misma bacteria se pueden distinguir usando métodos serológicos. El antígeno de lipopolisacárido se conoce como antígeno O.

 En las bacterias Gram-positivas, carentes de membrana externa y, por tanto, de lipopolisacárido, una función equivalente a la de éste la realizan los ácidos teicoicos. En la membrana externa se encuentran unas proteínas características denominadas porinas que intervienen en abrir vías de entrada de solutos al interior celular. Las porinas son complejos de varias moléculas de proteína que forman un canal por el que pueden atravesar la membrana externa moléculas de hasta 1000 Da de tamaño molecular.

 Espacio periplásmico 

En las bacterias Gram-negativas, el espacio comprendido entre las membranas interna y externa se denomina espacio periplásmico y comprende un volumen que rodea a la célula conteniendo gran cantidad de enzimas que permiten procesar los nutrientes para que puedan ser transportados al interior celular a través de la membrana interna. En las bacterias Gram-positivas no hay, en realidad, espacio periplásmico; pero se discute si la parte más interna del peptidoglicano puede desarrollar una función similar reteniendo mediante fuerzas electrostáticas moléculas de enzimas equivalentes a las periplásmicas de Gram-negativos. 

Cápsula y capas mucosa. 

Muchas bacterias presentan en la parte exterior de sus paredes celulares otras capas que sirven de protección frente a agresiones físicas, químicas o biológicas. Entre estas capas se encuentran cubiertas proteicas que forman una especie de coraza denominada capa S y las capas de naturaleza polisacarídica denominadas cápsulas. La capa S está formada por proteínas y glicoproteínas y participa en la adhesión de las bacterias a superficies, la protección frente a la fagocitosis y actúa como barrera frente a enzimas o substancias que pudieran dañar a las bacterias que la poseen. Las cápsulas están formadas por polisacáridos o polipéptidos y participan en la adhesión de las bacterias a superficies, retardan la desecación de las bacterias en ambientes secos y proporcionan protección frente a la fagocitosis. No solo las bacterias presentan cápsulas sino que también han sido descritas en algunos hongos unicelulares (Cryptococcus neoformans).

Apéndices bacterianos.

 Las bacterias pueden poseer una serie de apéndices celulares que desempeñan funciones diversas:

 Flagelos.

 La mayoría de las bacterias móviles lo son por la acción de los flagelos: estructuras proteicas cuyas características pueden ser fácilmente detectadas por medios serológicos lo que permite la identificación de microorganismos o distintas cepas de una misma especie con facilidad. El antígeno flagelar se conoce como antígeno H.

 Las bacterias flageladas pueden tener entre uno y 20 flagelos por célula. Su composición es proteica y su tamaño es de unos 20 nm de diámetro y de entre 5 y 20 µm de longitud. Su extremada delgadez hace necesario el uso de sistemas específicos de tinción para poder observarlos. Los flagelos pueden estar colocados alrededor de la célula (peritricos) o en los polos (polares o lofotricos). 

El tipo de localización de los flagelos se pude identificar observando el movimiento de la célula. La función de los flagelos es proporcionar movimiento a las bacterias. Cuando este movimiento se dirige hacia, o en dirección opuesta, a un punto determinado se denomina tactismo, distinguiéndose los tipos de tactismo por su fuente atrayente o repelente (fototactismo, quimiotactismo, etc.).

 Fimbrias. 

Son pequeñas fibras de naturaleza proteica que se encuentran en la superficie de muchas especies de bacterias. Su número varía entre 100 y 1000 por bacteria y su tamaño entre 2 a 9 nm de diámetro y 1 a 5 µm de longitud. Estas estructuras son de gran importancia en la adhesión de la célula bacteriana a las superficies que van a colonizar. 

Pelo F. Es un tipo especial de fimbria producido por bacterias capaces de transmitir su información genética a otras mediante conjugación bacteriana. Cuando está presente hay sólo uno por célula. Su naturaleza es proteica. Su longitud llega a alcanzar las 10 µm.



 Prolongaciones de adhesión. 

Algunos tipos de microorganismos tienen prolongaciones con forma de ventosa que les permiten adherirse a las células animales que infectan. Esto ocurre, por ejemplo, en ciertos micoplasmas. Material de reserva Las bacterias acumulan materiales de reserva en forma de inclusiones de polihidroxibutirato, polifosfato, gránulos de azufre, etc.

Fuente: http://www.unavarra.es/genmic/microgral/01_morfologia_y_estructura.pdf

No hay comentarios:

Publicar un comentario